
2：Summary

Version: Next

2：：Summary

📄📄 2.1 Parameters

ICWKey Functional parameters

📄📄 2.2 Installation

ICWKey Software

Skip to
main
content

http://localhost:3000/en/
www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

2：Summary 2.1 Parameters

Version: Next

2.1 Parameters

2.1.1 Summary #
ICWorkshop is committed to empowering the traditional IC industry with Internet+
technology to provide a safer and more efficient production management model for the
traditional IC production process! In order to meet the needs of users for safe chip
programming, authorization control and customized production, ICWorkshop has
launched the "Security Authorization Shield (ICWKEY)", hereinafter referred to as ICWKEY,
which is an auxiliary tool for the offline authorization of ICWorkshop programmer,
PowerWriter, to control the number of authorizations and generate authorization keys,
which ensures that the target chip + PowerWriter + authorization key will be generated at
the time of production. ICWKEY is an auxiliary tool to control the number of ICWorkshop
and generate authorization keys, which can ensure the security of the entire link layer data
of target chip + PowerWriter + ICWKEY during production, ensure that the user's firmware
is not illegally accessed, and ensure that the user retains the unique authorization control
privileges in his hand, to prevent the possibility of unauthorized copies, ICWKEY is
completely in the hands of the user, which is safe and reliable, and the following figure
shows the workflow diagram:

Skip to
main
content

http://localhost:3000/en/

ICWKEY provides two UID (Unique Chip ID) authorization algorithms, Vector Matrix
Encryption (Matrix) and ECDSA Digital Signature, as well as an SDK for users to develop
their own custom authorization algorithms to meet different needs. It provides sample
programs on how to use UID authorization algorithms on target chips, and also provides
ICWKEY.exe, the Windows software of ICWKEY, which allows users to import the randomly
generated authorization algorithm source code of ICWKEY.exe into their own programs.

TIP

MCU General Purpose Advanced Software Protection Library can provide a
higher level of protection, integrated ICWKEY signature, firmware encapsulation,
firmware compression, function-level code encryption, firmware validation, object
monitoring, unauthorized access detection, debugger detection, privilege separation
and control, and other rich security features, to further enhance the security of the
software, for more information, please email to cs@icworkshop.com get more
detailed information (not currently publicly available to prevent abuse).

2.1.2 Product Parameters #
• Size：57mm x 22.5mm x 10.6mm (≈)

• Operating voltage：5V (USB Type-C)

• Product Power Consumption：60mA~ 90mA

TIP

The parameters of the products are theoretical data, because of the batch, working
environment, product improvement and other reasons, there may be differences in
the actual, for reference only, subject to change without notice!

mailto:cs@icworkshop.com

2.1.3 Interface #

• ①：PowerWriter® Type-C Host Port (connected to PowerWriter)。

• ②：ICWKEY OLED monitor

◦ Project name: Displayed in the format: SafeLic_xxxxxxxx，xxxxxxxx hash for
random item names。

◦ Remaining/total : such as 998/1000, the number of available signatures is 998,
and the total number of signatures is 1000.

• ③：Type-C slave port (on a computer) ：ICWKEY Powered communication
(connected to PC).

2.1.4 Characteristics #
✓

Unique ID signature range can be restricted

✓
Number of signatures can be controlled

✓
Configurable number of times (reuse control)

✓
Authorization log query

✓
Signature test

✓
Localizations

✓
Signature support

✓
Matrix sign

✓
ECDSA sign

2.1.5 Safety Features #
• ICWKEY Developed with a secure chip and integrated with advanced software

protection libraries to protect firmware security.

• ICWKEY and PC / ICWKEY and PowerWriter communication encryption, built-in anti-
brute force breaking mechanism, can not be cracked by exhaustive password
cracking.

• Data dual zone, encrypted design, power down emergency storage.

• Extra long life design.

Edit this page

https://gitee.com/powerwriter/powerwriter-doc/tree/develop/docs/icwkey/02-introduce/01-icwkey.md
https://gitee.com/powerwriter/powerwriter-doc/tree/develop/docs/icwkey/02-introduce/01-icwkey.md

2：Summary 2.2 Installation

Version: Next

2.2 Installation

2.2.1 Summary #
The ICWKEY client provides a complete access and configuration interface to the ICWKEY
device.

2.2.2 Client Installation #

2.2.2.1 Software download address #

See the official website for the latest client download address:

https://www.powerwriter.com/index/index/products?p=21&c=files&t=Client

Please download the ICWKey installation package according to your current system
platform.

Skip to
main
content

http://localhost:3000/en/
https://www.powerwriter.com/index/index/products?p=21&c=files&t=Client

2.2.2.2 Software Installation Process #

2.2.2.3 Quick start #

• Launch ICWKEY from the system desktop by locating the ICWKEY icon.

• Search for ICWKEY from the quick search bar and launch it.

2.2.3 USB Driver Installation #
ICWKEY use USB Virtual COM Port to connect to the computer, the first time you connect
to the computer, prompted to install the driver, if the computer is Windows 10 system, the
system will automatically complete the installation of the driver, if the system is earlier

than Windows 10 may need to install manually, the installation package in . \USB_driver\
STSW_STM32102_V1.4.0, read the readme.txt, and then double-click VCP_V1.4.0_Setup.exe
to start the installation, the demonstration is as follows:

Edit this page

https://gitee.com/powerwriter/powerwriter-doc/tree/develop/docs/icwkey/02-introduce/02-software.md
https://gitee.com/powerwriter/powerwriter-doc/tree/develop/docs/icwkey/02-introduce/02-software.md

3：Quick Start

Version: Next

3：：Quick Start

📄📄 3.1 PowerWriter Configuration

ICWKey Basic Configuration

📄📄 3.2 ICWKEY Configuration

ICWKey configuration

📄📄 3.3 ECDSA Sample

Detailed demonstration of the use of the ECDSA signature algorithm, as well as the caveats

📄📄 3.4 Matrix Sample

Detailed demonstration of the use of the Matrix signature algorithm, as well as the caveats

Skip to
main
content

http://localhost:3000/en/

3：Quick Start 3.1 PowerWriter Configuration

Version: Next

3.1 PowerWriter
Configuration

3.1.1 Descriptive #
ICWKEY needs to be used with PowerWriter, both must use the same project name and
communication key in order to complete the communication, in addition to the
PowerWriter side needs to be configured to sign the write address.

3.1.2 Configuration #
The configuration process is referenced below:

✓
Open the PowerWriter software and load the existing project or select the chip that

needs to be signed to create a new project.

✓
Select Burner Setup Page -> Authorization & Signature -> Please select from the

Signature Mode field: ICWKEY authorizations(or lock mode).

✓
Modify authorization address: modify the authorization address to the address where

the signature information is actually stored(location stored in the firmware, e.g. setting to
0x08002000 means that the signature information needs to be stored at location
0x08002000).

✓
When you are finished setting up, save the PowerWriter project to avoid losing

information.

Skip to
main
content

http://localhost:3000/en/

CAUTION

• The authorization address is the address where the signature information is
actually stored, which is different for each item. When PowerWriter selects the
chip for the first time, the address will be set to the end of the firmware.

• After the setup is complete, save the PowerWriter project so that the
configuration information is not lost and the ICWKEY device cannot be
connected.

• Locked Mode Additional Note: Locked Mode prevents the communication
configuration from being viewed and modified again after the next reload of the
project (the signature address can be modified).

3.1.3 Demonstrations #
A demonstration of the configuration process on the PowerWriter side is shown below.

Edit this page

https://gitee.com/powerwriter/powerwriter-doc/tree/develop/docs/icwkey/03-quick-start/01-commication.md
https://gitee.com/powerwriter/powerwriter-doc/tree/develop/docs/icwkey/03-quick-start/01-commication.md

3：Quick Start 3.2 ICWKEY Configuration

Version: Next

3.2 ICWKEY Configuration
3.2.1 Configuration #

The configuration process is referenced below:

✓
Connecting ICWKEY devices (new devices with default communication configuration,

reused devices loading previous project files)

✓
Copy the communication password and project name from the PowerWriter

configuration side to the configuration side of ICWKEY.

✓
Setting the number of authorizations (which controls how many signatures can actually

be performed)

✓
Check and configure the number of times it can be configured (if you want the device

to be reused, you don't have to adjust it, if it is used once and then voided, configure it as
once)

✓
Select the signature algorithm on the UID Algorithm page, export the algorithm source

code, and save it.

✓
Click the Save and Update button to configure the ICWKEY.

✓
Save the ICWKEY project file according to the pop-up window.

CAUTION

• The communication configuration is generated by the PowerWriter and copied
to the ICWKEY's configuration window.

• UID algorithm selection, random generation -> export source code -> save the
settings, the subsequent need to do development integration based on the
exported source code.

Skip to
main
content

http://localhost:3000/en/

• After ICWKEY is configured, please save the project and remember the project
password, losing the project (connection information), you will not be able to
connect to the ICWKEY device.

• Configurable number of times Special Note: The default is 65535 reusable times,
every time you update the device, the number of times -1, when the number of
times reaches 0, at this time, ICWKEY device, will not be able to change any
information.

3.2.2 Demonstrations #

A demonstration of the configuration flow on the ICWKEY side is shown below.

Edit this page

https://gitee.com/powerwriter/powerwriter-doc/tree/develop/docs/icwkey/03-quick-start/02-icwkey.md
https://gitee.com/powerwriter/powerwriter-doc/tree/develop/docs/icwkey/03-quick-start/02-icwkey.md

3：Quick Start 3.3 ECDSA Sample

Version: Next

3.3 ECDSA Sample

3.3.1 Prepare #
ECDSA signature is an asymmetric encryption electronic signature method, the private key
is stored in the signature device ICWKEY, and the public key is stored in the project
firmware. ICWKEY generates the signature information through the ID of the target chip
and the current private key, and then writes the signature information to the specified
address of the firmware through the PowerWriter, and during the operation of the
firmware, it verifies whether the signature information is valid through the public key + ID,
thus determining whether the current chip has been validly authorized, and avoiding the
firmware from being directly copied. When the firmware is running, the public key + ID will
be used to verify whether the current signature information is valid or not, so as to
determine whether the current chip has been validly authorized, and to avoid the firmware
from being directly copied and used. Before we start, we need to follow the process of
verifying that all the preparatory work has been completed.

✓
ICWKEY signatures (or ICWKEY signature lock mode) are used in PowerWriter projects.

✓
The signature address has been set (e.g. 0x08002000).

✓
The communication information on the PowerWriter side has been synchronized to the

project in ICWKEY and encrypted communication with the project has been re-established.

✓
Reasonably set the number of times it can be authorized, for example, set it to 10,000.

✓
Signature method: ECDSA signature was chosen, saved to ICWKEY, and the source code

was exported.

If all the above steps are completed, you can see the display information of ICWKEY device
and the exported source code information, refer to the following:

Skip to
main
content

http://localhost:3000/en/

At the same time the ICWKEY device will display the following message:

3.3.2 Sample project #

3.3.2.1 Prepare #

Sample project path ICWKEY installation path, specifically:

ICWKEY desktop icon, you can quickly locate until, and copy the ECDSA sample project to
the specified path, and decompression, reference demo as follows:

C:\Users\用户名\AppData\Local\ICWKEY\Examples_for_mdk

3.3.2.2 Code structure #

3.3.2.2.1 startup_stm32f103xg.s #

✓
调整堆大小 > 0x1300

✓
挑战栈大小 > 0x800

Stack_Size EQU 0x1000 ;Please make the stack bigger, ECDSA

signature verification needs more stack space!

AREA STACK, NOINIT, READWRITE, ALIGN=3

Stack_Mem SPACE Stack_Size

CAUTION

Please pay special attention to the stack size, to adjust it, otherwise it will not be able
to perform the signature verification and return an out of memory error message.

3.3.2.2.2 cortex_chipid_binding.c #

✓
Replace the public key with the one exported by ICWKEY.

3.3.2.2.3 cortex_chipid_binding.h #

✓
Fill in the ID address (see prompt message)

✓
Change the signature address to the signature address in PowerWriter.

✓
Depending on the situation, whether placeholders are turned on or not.

//Use the public key in ICWKEY for substitution.

const static uint8_t PUBLIC_KEY[49]={

0x04,0x00,0x7F,0xFE,0xF3,0x5A,0xFB,0x48,0xC3,0xEB,0xE8,0xE5,0x41,0xDE,0xAF,0x99,

0x89,0x48,0x8C,0x31,0x93,0x2A,0x91,0x81,0xD1,0x17,0x62,0xA5,0x89,0xA6,0x77,0x02,

0x14,0x60,0xC7,0x79,0x1E,0x33,0xDF,0x8F,0xE0,0xF0,0xC2,0x47,0x03,0x49,0x7B,0x5F,

0xF7

};

/* Exported define

--*/

/* The following parameter definitions must be consistent with the

actual chip and burner settings */

TIP

UID_CHIP_ADDR address, you can use PowerWriter to select the signature mode as
Matrix, export the source code can see the actual ID address.

3.3.2.2.4 main.c #

✓
Initialization ID

✓
Verify Signature

/* Private user code

---*/

/* USER CODE BEGIN 0 */

//Used to print log messages from the serial port

int fputc(int ch, FILE *f)

{

uint8_t ch8 = (uint8_t)ch;

HAL_UART_Transmit(&huart2,&ch8,sizeof(ch8),5);

return (ch);

}

/* USER CODE END 0 */

/**

* @brief The application entry point.

* @retval int

*/

int main(void)

{

/* USER CODE BEGIN 1 */

/* USER CODE END 1 */

/* MCU

Configuration--*/

TIP

The sample code is just a demo, for more security, please note that hiding the code
can improve the security, if necessary, contact us to get the MCU Common Security
Protection Library to further enhance the firmware security and prevent the firmware
from being reverse decompiled, cracked, and modified.

3.3.2.3 Compiling #

Logging can be turned on during verification for easy viewing of the results. Compile the
project and the test firmware will be generated in the directory Output\
TargetIC_Example.bin.

3.3.2.4 Validate #

Reopen the PowerWriter project, add the TargetIC_Example.bin test firmware to the
Program Memory page, and load the project into the PowerWriter device as shown below:

#define SISSDK_LOG_ENABLE //disbale /Enable #warning You have to

implement fput functions to use log print function

Connect ICWKEY to PowerWriter, and connect the target PCB of MCU to be programmed,
and connect the power supply for programming, the reference wiring is shown as follows.

After programming, connect the serial port TX pin of the target PCB, you can see the
output signature verification information, refer to the following:

3.3.2.5 Debugging method #

After using PowerWriter to sign the target firmware and program it to the target chip, you
can check whether the signature is in effect by setting the status output. In complex
scenarios, you can't determine the location of the problem simply by looking at the
working status, and at this time, you need to debug the target chip, and the debugging
steps are as follows:

• Refer to the compilation and verification process to complete the programming

• IDE selection: proceed without erasing the target chip, without programming the
target chip, and without verifying the target chip.

The reference demo is shown below:

Edit this page

https://gitee.com/powerwriter/powerwriter-doc/tree/develop/docs/icwkey/03-quick-start/03-icwkey-sample.md
https://gitee.com/powerwriter/powerwriter-doc/tree/develop/docs/icwkey/03-quick-start/03-icwkey-sample.md

3：Quick Start 3.4 Matrix Sample

Version: Next

3.4 Matrix Sample

3.4.1 Prepare #
Matrix signature is a simple checksum algorithm, ICWKEY (PowerWriter) randomly
generates a combination to encrypt the ID, and then write the encrypted information to
the target chip during production, the target chip startup, the signature is verified, and is
never used to verify that the current chip whether the signature information is written to
the method of firmware protection, before starting, we need to follow the process to verify
that all preparations have been completed. We need to follow the process to verify that all
preparations have been completed.

✓
ICWKEY signatures (or ICWKEY signature lock mode) are used in PowerWriter projects.

✓
The signature address has been set (e.g. 0x08002000).

✓
The communication information on the PowerWriter side has been synchronized to the

project in ICWKEY and encrypted communication with the project has been re-established.

✓
Reasonably set the number of times it can be authorized, for example, set it to 10,000.

✓
Signature method: Matrix signature was chosen, saved to ICWKEY, and the source code

was exported.

The demo is shown below:

Skip to
main
content

http://localhost:3000/en/

If all the above steps are completed, you can see the display information of ICWKEY device
and the exported source code information, refer to the following:

At the same time the ICWKEY device will display the following message:

3.4.2 Sample project #

3.4.2.1 Prepare #

Sample project path ICWKEY installation path, specifically:

ICWKEY desktop icon, you can quickly locate until, and copy the Matrix sample project to
the specified path, and decompression, refer to the demo as follows:

C:\Users\用户名\AppData\Local\ICWKEY\Examples_for_mdk

3.4.2.2 Code structure #

3.4.2.2.1 cortex_chipid_binding.c #

✓
Replacing ICWKEY exported functions

//Replace it with the exported code from ICWKEY.

//The following code may warn in KEIL(MDK), ignore it

static void ChipUIDAlgo(char pUserID[], char pChipID[], char pKey[])

{

pKey[0] = pChipID[8] * pChipID[3] | pUserID[8] & pChipID[10] ;

pKey[1] = pChipID[5] + pChipID[2] - pChipID[7] ^ pChipID[11] ;

3.4.2.2.2 cortex_chipid_binding.h #

✓
Fill in the ID address (see the prompt).

✓
Change the signature address to the PowerWriter signature address.

✓
Replace with UID_USERID_KEYx exported in ICWKEY .

✓
Depending on the situation, whether placeholders are turned on or not.

/* Exported define

--*/

/* The following macros are automatically exported by the software

supporting the burner.

Please do not modify them to keep them consistent */

#define UID_CHIP_MASK 0x5BD489F0 //Random

generation

#define UID_CHIP_SIZE 12 //ChipID

Size

/* ID address of the target chip, which can be queried according to the

chip's manual */

#define UID_CHIP_ADDR (0x1FFFF7E8^UID_CHIP_MASK)

//ChipID Inner Addr in chip

#define UID_KEY_LENGTH 12 //The

password is the same length as the user ID input

//Signature information storage address, change to the address where the

signature information is stored in the PowerWriter project 0x08002000

#define UID_KEYADDR_INNER (0x08002000^UID_CHIP_MASK) //Key

Store Addr In flash

//Replace with the password exported in ICWKEY.

#define UID_USERID_LENGTH UID_KEY_LENGTH

//Customize password length

TIP

UID_CHIP_ADDR address, you can use PowerWriter to select the signature mode as
Matrix, export the source code can see the actual ID address.

3.4.2.2.3 main.c #

✓
Initialization ID

✓
Verify Signature

/* Private user code

---*/

/* USER CODE BEGIN 0 */

//Used to print log messages from the serial port

int fputc(int ch, FILE *f)

{

uint8_t ch8 = (uint8_t)ch;

HAL_UART_Transmit(&huart2,&ch8,sizeof(ch8),5);

return (ch);

}

/* USER CODE END 0 */

/**

* @brief The application entry point.

* @retval int

*/

int main(void)

{

/* USER CODE BEGIN 1 */

/* USER CODE END 1 */

/* MCU

Configuration--*/

TIP

The sample code is just a demo, for more security, please note that hiding the code
can improve the security, if necessary, contact us to get the MCU Common Security
Protection Library to further enhance the firmware security and prevent the firmware
from being reverse decompiled, cracked, and modified.

3.4.2.3 Compiling #

Compiling the project will generate the test firmware in the directory Output\
TargetIC_Example.bin.

3.4.2.4 Validate #

Reopen the PowerWriter project, add the TargetIC_Example.bin test firmware to the
Program Memory page, and load the project into the PowerWriter device as shown below:

Connect ICWKEY to PowerWriter, and connect the target PCB of MCU to be programmed,
and connect the power supply for programming, the reference wiring is shown as follows.

After programming, connect the serial port TX pin of the target PCB, you can see the
output signature verification information, refer to the following:

3.4.2.5 Debugging method #

After using PowerWriter to sign the target firmware and program it to the target chip, you
can check whether the signature is in effect by setting the status output. In complex
scenarios, you can't determine the location of the problem simply by looking at the
working status, and at this time, you need to debug the target chip, and the debugging
steps are as follows:

• Refer to the compilation and verification process to complete the programming

• IDE selection: No erasing target chip, no programming target chip, no calibrating
target chip is performed.

The reference demo is shown below:

Edit this page

https://gitee.com/powerwriter/powerwriter-doc/tree/develop/docs/icwkey/03-quick-start/04-icwkey-matrix.md
https://gitee.com/powerwriter/powerwriter-doc/tree/develop/docs/icwkey/03-quick-start/04-icwkey-matrix.md

4：Reference Guide

Version: Next

4：：Reference Guide

📄📄 4.1 Menu Functions

ICWKey Menu Functions in Detail

📄📄 4.2 Communication Settings

ICWKey Communication Settings

📄📄 4.3 Project Configuration

ICWKey Detailed project configuration method

📄📄 4.4 Logger

ICWKey Introduction to Log Fields

Skip to
main
content

http://localhost:3000/en/

4：Reference Guide 4.1 Menu Functions

Version: Next

4.1 Menu Functions

4.1.1 File #

4.1.1.1 New project #

New ICWKEY project, after clicking New Project button, it will reset all the current settings,
if you need to save the data, please save the data in advance to avoid data loss.

4.1.1.2 Load Project #

Load the ICWKEY project file with the suffix uprj, click Load Project, the Load Project dialog
box will pop up, fill in the project password, browse the project path, and then click the OK
button, the project will be loaded.

4.1.1.3 Saving Project #

Saves the current changes to the project file.

4.1.1.4 Save project as #

Save the project as a new project.

4.1.1.5 Exit #

Exit the ICWKEY software.

Skip to
main
content

http://localhost:3000/en/

4.1.2 Operation #

4.1.2.1 Default Communication Settings #

This function allows you to restore the project name, password, vectors, and other
information set in the communication settings to the default values as shown below.

4.1.2.2 Project communication settings #

This function restores the communication connection information to the current settings
of the loaded items if the communication settings have been changed to the default
communication settings.

4.1.2.3 Save project and update #

This function will save the project and synchronize the latest project to the ICWKEY
hardware device.

/*

Default Communication Settings

Project：ICWorkshop

Password：30313233343536373839414243444546

IV：46454443424139383736353433323130

*/

4.1.3 Help #

4.1.3.1 Official website #

Visit the official website of ICWorkshop and the official website of PowerWriter.
www.powerwriter.com.

4.1.3.2 License #

View User Agreement.

4.1.3.3 User manual #

View ICWKEY user manual offline PDF.

4.1.4 Localization #

4.1.4.1 Simplified Chinese #

Set to Simplified Chinese.

4.1.4.2 English #

Set to English.

Edit this page

http://www.powerwriter.com/
https://gitee.com/powerwriter/powerwriter-doc/tree/develop/docs/icwkey/04-manual/01-menu.md
https://gitee.com/powerwriter/powerwriter-doc/tree/develop/docs/icwkey/04-manual/01-menu.md

4：Reference Guide 4.2 Communication Settings

Version: Next

4.2 Communication Settings

• Project name：Default as ICWorkshop。

• Key：Default as 30313233343536373839414243444546。

• IV：Default as 46454443424139383736353433323130。

• Device List：Currently recognized to the ICWKEY device list.

• Refresh：Refresh the device list.

• Connect：Connect the selected device.

Please refer to Demo->Synchronize project name to ICWKEY.

Edit this page

Skip to
main
content

http://localhost:3000/en/
https://gitee.com/powerwriter/powerwriter-doc/tree/develop/docs/icwkey/04-manual/02-community.md
https://gitee.com/powerwriter/powerwriter-doc/tree/develop/docs/icwkey/04-manual/02-community.md

4：Reference Guide 4.3 Project Configuration

Version: Next

4.3 Project Configuration

4.3.1 Configuration #
The Device Configuration page, which contains most of the configuration needed for
signature setup, see the detailed labeled information as shown below:

• New project : New project name, this field is copied from the PowerWriter project.

• New Key：：New Password, this field is copied from the PowerWriter project.

• New IV：：New vector, this field is copied from the PowerWriter project.

• UID Min：：Limit UID Min.

• UID Max：：Limit UID maximum.

• Licenses quantity: Controls the number of actual authorizations available.

Skip to
main
content

http://localhost:3000/en/

• Configure times: The current number of times the ICWKEY device can change the
configuration, the default is 65536, every time you configure, the counter -1, when it
is 0, it will no longer be able to make changes!

• Remain config: The number of modifications remaining for the current device.

• Enable Authorization：：Switch authorization enable / disable .

• Allow firmware upgrades：：Whether to allow firmware upgrades.

• Limit the UID authorization range: Limit the use of UIDs.

• Allows updating the UID algorithm: Whether or not to allow the authorization
algorithm to be updated.

• Enable log: Records authorisation log information, often used for reports.

• Read the target configuration: Reads the configuration information of the current
device.

CAUTION

• After the new project name, password, and vectors are copied and updated from
the PowerWriter project, please save the project to avoid losing it, or else
ICWKEY will not be able to connect.

• UID setting, valid only when Limit UID Authorization Scope is turned on.

• Configurable number of times: Please note that this position is not an
authorized number, but the number of times the device can change the settings,
when the number of times is 0, the device will be locked, and can not be
repeated to modify, unless necessary, do not modify this information.

4.3.2 UID #
Currently comes with two signature algorithms, the first is Matrix Signature, a random
matrix encryption algorithm, the advantage is that it takes up very little resources, and it
can sign and verify the target chip to prevent the firmware from being directly copied and

used, and the second is ECDSA Digital Signature, a non-stacked electronic signature
algorithm, which is currently a very strong encryption algorithm, and the algorithm is
difficult to crack, but it is still necessary to further enhance the protection of the code itself
to prevent the signature from being removed. However, it is still necessary to further
enhance the protection of the code itself to prevent the signature from being removed,
and can be integrated with the MCU Common Advanced Software Protection Library to
enhance the security of the firmware, please contact us cs@icworkshop.com。

4.3.2.1 Matrix #

This setting is generally sufficient to keep the default settings, which can randomly
generate Keys.

mailto:cs@icworkshop.com

Randomly generate the Matrix information, when the operation is complete, click Export
Source (to be integrated into the firmware), and finally click Compile and Save to update
the settings.

TIP

After setting, please be sure to click the save button to avoid the setting is not
updated, if you forget to operate, you can perform the operation again and export
the source code.

4.3.2.1 ECDSA #

Random Generation: Generates ECDSA digitally signed public-private key pairs.

Export source code: Export source code information for integration.

Compile and Save: After the operation is completed, the settings are saved and updated.

TIP

After setting, please be sure to click the save button to avoid the setting is not
updated, if you forget to operate, you can perform the operation again and export
the source code.

4.3.3 Logger #

Total number of authorizations: Total number of authorizations currently configured for
the device.

Used: Accumulation of the number of times authorization is currently requested.

Number of successes: Accumulation of the number of times a certificate has been
successfully distributed.

Number of failures: Total number of distribution failures.

Unknown Error: Unknown error, generally categorized as the number of failures.

Testing authorization:

Filling in the ID information will generate the authorization information of the current chip,
which is commonly used for debugging.

TIP

• Please be aware that the signature information returned by ECDSA authorization
test may not be the same every time.

• Number of failures + number of successes + unknown errors = number of times

used.

Edit this page

https://gitee.com/powerwriter/powerwriter-doc/tree/develop/docs/icwkey/04-manual/03-config.md
https://gitee.com/powerwriter/powerwriter-doc/tree/develop/docs/icwkey/04-manual/03-config.md

4：Reference Guide 4.4 Logger

Version: Next

4.4 Logger
The ICWKEY log field displays the current flow of the operation and the result of the action
in the following format

ICWORKSHOP Safety License Shield(ICWKEY) Quick Start

Before using the ICWORKSHOP Safety License Shield(ICWKEYy)，we suggest

you read the user manual.You can open the user manual through

menu->help->user manual.

ICWORKSHOP Technology (Shenzhen) Co., Ltd.

Website: https://www.icworkshop.com

Contact：400-1568-598

Email：cs@icworkshop.com

===

04/24-13:51:45:286> Device inserted

04/24-13:51:54:254> Load successfully:SafeLic_7FB8C941_2.uprj

04/24-13:51:55:023> Start device pairing

04/24-13:51:55:193> Pairing success

04/24-13:51:55:224> Successfully read target device configuration,

Project name:SafeLic_7FB8C941,serial

number:21B53974DE21BA1179EF54CA853E89DE,

HW version :v1.00,FW version :v1.03,Total

license:10000,Left

license:10000,configurable times:65522,uid algorithm

: Elliptic Curve Cryptography

Skip to
main
content

http://localhost:3000/en/

Edit this page

https://gitee.com/powerwriter/powerwriter-doc/tree/develop/docs/icwkey/04-manual/04-logger.md
https://gitee.com/powerwriter/powerwriter-doc/tree/develop/docs/icwkey/04-manual/04-logger.md

5：Appendix

Version: Next

5：：Appendix

📄📄 5.1 FAQ

ICWKey common problems

📄📄 5.2 Notices

ICWKey caveat

Skip to
main
content

http://localhost:3000/en/

5：Appendix 5.1 FAQ

Version: Next

5.1 FAQ

1：：USB Driver installation failed #
If the computer operating system is Windows XP, Win7 or Win8, and is not the official
original version, but a lite system, you may encounter installation failure problems, you can
search for "ST Virtual Serial Driver Installation Failure" to get a solution, do not select the
actual system does not match the driver to install, if necessary, contact technical support.
Do not choose a driver that does not match your actual system, and contact technical
support if necessary.

2：：ICWKEY connection judgment #
Ensure that the ICWKEY Client and ICWKEY are disconnected (not paired), ICWKEY is
plugged into the PowerWriter's USB socket, and the buzzer will beep twice to indicate a
successful connection.

3：：Validating Signed Data #
When the PowerWriter burns successfully, the green indicator light will be on. If the user is
worried that the burned data is not the same as expected, in case the chip does not have
read protection turned on, the user can use PowerWriter.exe or other tools to verify the
target chip, or read back the data to observe if the data is the same as the original file.

Skip to
main
content

http://localhost:3000/en/

4：：Failed during debugging #
The signature information is programmed by PowerWriter, and there is no authorization
data during debugging, so the checksum cannot be passed, please refer to the ECDSA
Sample & Matrix Sample。

5：：Signature data length #
• Matrix : The length is normally 12 bytes, follow the setting, you can set 4 bytes, 8

bytes, 12 bytes.

• ECDSA: Not more than 141 bytes in length.

6：：Programming Failure Reasons #
• Wiring problems: wrong wiring, loose wiring.

• Configuration error: The selected chip does not match the target chip.

• Count Exhaustion: The count set by PowerWriter or ICWKEY is exhausted.

• Disable burn-in: The target chip has turned off the burn-in function, for example, the
secondary read protection is turned on, and JTAG &serial wire has been disabled.

• Pin reuse: the burn IO is changed to normal IO by the program, try to connect the
RESET pin and use the under reset mode to burn.

• Insufficient power supply: Low voltage may cause a burn failure.

7：：Cannot reprogram after
programming #
It may be that the target chip has read protection turned on.

Edit this page

https://gitee.com/powerwriter/powerwriter-doc/tree/develop/docs/icwkey/05-note/01.faq.md
https://gitee.com/powerwriter/powerwriter-doc/tree/develop/docs/icwkey/05-note/01.faq.md

5：Appendix 5.2 Notices

Version: Next

5.2 Notices

1：：Source code modification #
The following information is usually required to be modified in ECDSA signature mode:

• Replace the public key with the one exported by ICWKEY.

• Fill in the ID address (see the prompted message).

• Modify the signature address to the signature address in the PowerWriter.

• Depending on the situation, whether placeholders are turned on or not.

The following information is usually required to be modified in ECDSA signature mode:

• Replace the function exported by ICWKEY.

• Fill in the ID address.

• Change the signature address to the PowerWriter signature address.

• Replace with UID_USERID_KEYx exported in ICWKEY .

• Depending on the situation, whether placeholders are turned on or not.

Please refer to ECDSA Sample & Matrix Sample。

2：：Project password #
Keep in mind to save the project files for the PowerWriter project and the ICWKEY. Loss of
the project files may result in the inability to properly configure the signature or connect
to the ICWKEY device.

Skip to
main
content

http://localhost:3000/en/

3：：Signature address #
Please don't store the signature address beyond the space of Flash, to avoid not being
able to burn, at the same time, please don't overlap with the code, if you are worried
about the overlap, please turn on the placeholder, after turning on the placeholder, it will
reserve the space in the firmware, so as to avoid overlapping phenomenon, and at the
same time, please put the signature address in the front of the address as far as possible.

3：：Placeholder #
When turned on, space is pre-allocated in the firmware to avoid overwriting firmware data.
When not turned on, the data at the specified signature address is overwritten, and the
length of the overwrite is referenced to

Signature data length

Edit this page

https://gitee.com/powerwriter/powerwriter-doc/tree/develop/docs/icwkey/05-note/02.note.md
https://gitee.com/powerwriter/powerwriter-doc/tree/develop/docs/icwkey/05-note/02.note.md

	2：Summary
	📄️ 2.1 Parameters
	📄️ 2.2 Installation

	2.1 Parameters
	2.1.1 Summary
	2.1.2 Product Parameters
	2.1.3 Interface
	2.1.4 Characteristics
	2.1.5 Safety Features

	2.2 Installation
	2.2.1 Summary
	2.2.2 Client Installation
	2.2.2.1 Software download address
	2.2.2.2 Software Installation Process
	2.2.2.3 Quick start

	2.2.3 USB Driver Installation

	3：Quick Start
	📄️ 3.1 PowerWriter Configuration
	📄️ 3.2 ICWKEY Configuration
	📄️ 3.3 ECDSA Sample
	📄️ 3.4 Matrix Sample

	3.1 PowerWriter Configuration
	3.1.1 Descriptive
	3.1.2 Configuration
	3.1.3 Demonstrations
	

	3.2 ICWKEY Configuration
	3.2.1 Configuration
	3.2.2 Demonstrations

	3.3 ECDSA Sample
	3.3.1 Prepare
	3.3.2 Sample project
	3.3.2.1 Prepare
	3.3.2.2 Code structure
	3.3.2.2.1 startup_stm32f103xg.s
	3.3.2.2.2 cortex_chipid_binding.c
	3.3.2.2.3 cortex_chipid_binding.h
	3.3.2.2.4 main.c

	3.3.2.3 Compiling
	3.3.2.4 Validate
	3.3.2.5 Debugging method

	3.4 Matrix Sample
	3.4.1 Prepare
	3.4.2 Sample project
	3.4.2.1 Prepare
	3.4.2.2 Code structure
	3.4.2.2.1 cortex_chipid_binding.c
	3.4.2.2.2 cortex_chipid_binding.h
	3.4.2.2.3 main.c

	3.4.2.3 Compiling
	3.4.2.4 Validate
	3.4.2.5 Debugging method

	4：Reference Guide
	📄️ 4.1 Menu Functions
	📄️ 4.2 Communication Settings
	📄️ 4.3 Project Configuration
	📄️ 4.4 Logger

	4.1 Menu Functions
	4.1.1 File
	4.1.1.1 New project
	4.1.1.2 Load Project
	4.1.1.3 Saving Project
	4.1.1.4 Save project as
	4.1.1.5 Exit

	4.1.2 Operation
	4.1.2.1 Default Communication Settings
	4.1.2.2 Project communication settings
	4.1.2.3 Save project and update

	4.1.3 Help
	4.1.3.1 Official website
	4.1.3.2 License
	4.1.3.3 User manual

	4.1.4 Localization
	4.1.4.1 Simplified Chinese
	4.1.4.2 English

	4.2 Communication Settings
	4.3 Project Configuration
	4.3.1 Configuration
	4.3.2 UID
	4.3.2.1 Matrix
	4.3.2.1 ECDSA

	4.3.3 Logger

	4.4 Logger
	5：Appendix
	📄️ 5.1 FAQ
	📄️ 5.2 Notices

	5.1 FAQ
	1：USB Driver installation failed
	2：ICWKEY connection judgment
	3：Validating Signed Data
	4：Failed during debugging
	5：Signature data length
	6：Programming Failure Reasons
	7：Cannot reprogram after programming

	5.2 Notices
	1：Source code modification
	2：Project password
	3：Signature address
	3：Placeholder

